MGL Avionics

Serial to parallel Gillham code converter for Smart Single encoding altimeter ALT-2 CNV-ALT2

The CNV-ALT2 converter accepts the RS232 output of a ALT-2 encoding altimeter and converts the serial altitude information to Gillham code in a format compatible with mode-C transponders.

Installation

Installation of the CNV-ALT2 unit is quite simple. Follow these steps:

Connect the black and red wires to a suitable on-board power source. The voltage may be in the range from 7 to 30 volts DC. Connect the red wire to the positive supply (+) and the black wire to the negative supply (-). You can connect the two wires directly to the power supply terminals of the ALT-2/ALT-4 or XTreme EFIS.

The red LED on the CNV-ALT2 should be flashing rapidly or should be steady on.

Connect the serial cable to the RS232 output connector of the ALT-2/ALT-4 or XTreme EFIS.

Select the protocol in the setup menu of the ALT-2/ALT-4 or XTreme EFIS. The protocol required is the "MGL" protocol. The CNV-ALT2 will not operate with any other protocol selection.

With the correct protocol selected, the led on the CNV-ALT2 should flash once per second. If you have achieved this, you can move onto the installation of the parallel output to the transponder.

The connection to the transponder consists of 10 or 11 connections, many transponders accept only codes A1 to C4, in this case you will leave signal D4 unconnected.

Here is a typica	al wiring diagra	m, in this cas	e the T2000	from Microair.
------------------	------------------	----------------	-------------	----------------

MICROAIR T2000 TRANSPONDER	D825		0815		MODE C ALTITUDE ENCODER
NCODER POWER			\square	B.14	- ENCODER POWER
ROUND			+ +	8.15	- GROUND
1 1	9		+ +	2	• A1
			+ +	3	- o A2
	11		+ +	4	- o 44
			+ +	5	- B1
	13		+ +	9	O B2
			+ +	10	- Q B4
8	18		+ +	11	O C1
	19		+ +	13	• C2
			\rightarrow	12	-0 C4
		N/C	See	ιL.	
t Wired	6				
T WRED	7				- GROUND
IDIO BEEP	1				- AUDIO BEEP
PRESSION IN	8				- SUPPRESSION IN
PPRESSION OUT	14				- SUPPRESSION OUT
TERNAL STANDBY IN	15				EXTERNAL STANDBY
TERNAL IDENT	16				- EKTERNAL IDENT
T WIRED	4				
T WIRED	5				
4 OR 28V IN	24				
	25				
COROUND	22				
	23				

The Gillham code signals are on the grey flat ribbon cable. Note that one side on the cable is marked with a red line. This first connection is the ground connection which in the case of the T2000 is to be wired to pin 3 of the DB25 connector. The wire next to the red one is signal C4 followed by C2, C1, B4, B2, B1, A4, A2, A1 and finally D4.

 Ground (Red)	
 C4	
 C2	
 C1	
 B4	
 B2	Layout of signals on grey ribbon cable
 B1	
 A4	
 A2	
 A1	
 D4	

Operation:

The CNV-ALT2 decoder will produce Gillham codes for any altitude that the ALT-2 unit can measure. Negative altitudes will be forwarded as zero feet altitude to prevent problems with older transponders that may not correctly transmit negative altitudes. The ALT-3 altimeter will measure altitudes typically to around 42000 ft, however, this requires a transponder that uses signal D4. Transponders that do not have D4 can only transmit altitudes up to 35000 ft.

The CNV-ALT2 produces inverted Gillham codes as required by virtually all transponders. The outputs are open collector types and will sink currents up to 0.5A but this is not recommended in praxis. Typical sink currents with transponders are only a few mA at the most.

LED states:

Off – no power or unit is faulty.

Steady on – unit is receiving a signal but cannot verify any valid data. This state may also be shown if the serial connector is disconnected.

Fast Flash – No data received. ALT-2 may be switched off or does not transmit. One second Flash – Unit is receiving correct data and is producing codes.

Following is a table of commonly used transponders and their Gillham code connections.

Please consult your transponders installation manual on the physical position of every contact. Ensure that you wire the Gillham codes correctly and securely.

															8
Aircraft Ground	Aircraft Power	02	C4	CI	B4	B2	Aircraft Power	Ground	Strobe/Enable	BI	A4	A2	Al	D4	Function
Aircraft Ground	Note 1	5	7	ω	11	10	Note 1	Aircraft Ground	Aircraft Ground	6	8	6	4	No Connection	Bendix TPR2060
Aircraft Ground	Note 1	ſ	К	Н	F	Е	Note 1	Aircraft Ground	Aircraft Ground	D	с	В	A	N	Bendix TR641A/B
Aircraft Ground	Note 1	18	20	21	16	17	9 or per Note 1	Aircraft Ground	11	19	15	13	14	10	Cessna RT359T, RT459A, RT859A
Aircraft Ground	Note 1	4	7	10	12	11	Note 1	Aircraft Ground	Aircraft Ground	9	6	5	3	18	Garmin GTX300 Series
Aircraft Ground	Note 1	Г	Н	D	в	С	Note 1	Aircraft Ground	Aircraft Ground	E	J	K	М	8	Honeywell KT70/71 (Connector JKT701)
Aircraft Ground	Note 1	L	Н	D	В	С	Note 1	Aircraft Ground	Aircraft Ground	Е	J	К	М	No Connection	Honeywell KT76A/78A
Aircraft Ground	Note 1	R	s	Р	М	L	Note 1	Aircraft Ground	Aircraft Ground	К	J	Н	G	V	Honeywell KXP
Aircraft Ground	Note 1	11	13	14	6	10	18 or per Note 1	Aircraft Ground	S	12	8	6	7	No Connection	Narco AT50/A, AT150
Aircraft Ground	Note 1	ç	5	1	11	10	13 or per Note 1	Aircraft Ground	12	6	8	4	2	No Connection	Narco AT5, AT6/A
Aircraft Ground	Note 1	34	15	16	32	14	Note 1	Aircraft Ground	Aircraft Ground	33	12	31	13	35	UPSAT SL70
Aircraft Ground	Note 1	f	Z	Р	D	Γ	Note 1	Aircraft Ground	Aircraft Ground	Т	W	o	k	с	Wilcox 1014A

Codes in case of failed source:

Should the CNV-ALT2 not receive any valid altitude data, the unit will switch all output drivers off. This is the same state as if the unit is not connected to the transponder or if the CNV-ALT2 is not operating due to not having been switched on.

Technical specifications:

Absolute maximum ratings: Supply voltage: 35V Maximum current per output: 500mA Maximum current all outputs: 1A Maximum voltage output off state: 50V Output "on" maximum voltage: 0.7V Input: Serial, asynchronous. RS232. MGL protocol, ALT-2 encoder. Output type: Open collector using darlington bipolar transistors.

Important information:

Depending on laws and regulations in your country you may not be allowed to install a transponder and associated equipment yourself. This work may have to be done by a certified AMO or instrument technician.

Please check with your relevant authorities.

The ALT-2 encoding altimeter and the CNV-ALT2 are uncertified equipment and may normally only be used in uncertified aircraft, homebuilt aircraft and microlights (ultralights). Special operations permits for other aircraft may be required.

Please be very aware that any wiring mistake related to the application of Gillham codes to your transponder will result in incorrect altitudes broadcast by your transponder.

Any installation involving the CNV-ALT2 must be checked by a suitably equipped aircraft instrument maintenance outfit before operation. Failure to do this may be a criminal offence in your country.